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We consider the general character of the spatial distribution of a population that grows through reproduction
and subsequent local resettlement of new population members. We present several simple one- and two-
dimensional point placement models to illustrate possible generic behavior of these distributions. We show,
numerically and analytically, that these models all lead to multifractal spatial distributions of population.
Additionally, we make qualitative links between our models and the example of the Earth at Night image,
showing the Earth’s nighttime man-made light as seen from space. The Earth at Night data suffer from
saturation of the sensing photodetectors at high brightness �“clipping”�, and we account for how this influences
the determined dimension spectrum of the light intensity distribution.
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I. INTRODUCTION

Growing populations exist in many different areas of
interest. Although the most obvious examples are biological
in nature �e.g., bacterial cultures, the human population�,
one can also consider the growth of technological develop-
ment or the growth of urban infrastructure as more abstract
examples. While the specific details of these systems can
be quite different, the examples stated here all share the
characteristic that their populations grow on some back-
ground space. A reasonable question to ask then is what
types of spatial distributions result in these growing systems.
Figure 1 is a version of the popular Earth at Night �EaN�
image �1�. This is a composite image taken by orbiting
satellites that shows the Earth’s nighttime man-made lights
as seen from space. The light intensities are brightest in
areas that are known to be highly populated and developed,
and thus the image can be crudely thought of as representing
the spatial distribution of some combined measure of
technological development and human population density.
We see a very heterogeneous distribution, with areas of
very high intensities as well as areas of almost no light
at all.

A useful characterization of the heterogeneity of a distri-
bution is the distribution’s dimension spectrum Dq. A grid
of hypercubes, or boxes, of a fixed size with edge length
� is used to cover the distribution, where the dimension
of the hypercubes corresponds to the dimension of the
underlying space �e.g., squares for two dimensions and

line segments for one dimension�. Dq is then calculated
via �2,3�

Dq =
1

1 − q
lim
�→0

ln I�q,��
ln�1/��

, �1�

where

I�q,�� = �
i=1

N���

�i
q. �2�

Here the sum is taken over N��� nonempty grid boxes and �i

is the fraction of the particular quantity of interest �assumed
to be non-negative—e.g., light intensity in Fig. 1� that is
contained in box i.

The parameter q �q�0 in this paper� can be varied con-
tinuously to vary the influence of high- and low-�i boxes,
with larger values of q emphasizing the boxes with larger
�i’s. In particular, when q=1 we have the information di-
mension D1 which, applying L’Hospital’s rule to Eqs. �1� and
�2�, is given by

D1 = lim
�→0

�i=1

N���
�i ln �i

ln �
. �3�

A distribution is fractal if it possesses a fractional �noninte-
ger� dimension �i.e., if Dq is not an integer for some q�.
If Dq depends on q, then the distribution is said to be
multifractal.

Generally, when measuring the dimension of a distribu-
tion of numerical and/or experimental data, there is a maxi-
mum resolution observable. In the EaN image, for example,
the image’s individual pixels are the smallest boxes that*Electronic address: jozik@umd.edu
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can be used to cover the distribution in the calculation of Dq.
In such cases the �→0 limit cannot be considered; instead
one looks for a scaling range of � where the quantity
�1−q�−1 ln I�q ,�� varies approximately linearly with ln�1/��,
from which a dimension can be extracted as the slope of a
straight line fitted to data in the � scaling range. We illustrate
this process by calculating the information dimension D1 of
North America �6000�3000 pixels� in the EaN image. Fig-
ure 2 shows a plot of �i=1

N����i ln �i vs ln � �with � in units of
pixels� for the image, where each �i is the fraction of the
total intensity in box i. The good evidence of linearity in this
plot over a scaling range in � of order e4�50 indicates that a
fractal description makes sense. The solid line in Fig. 2 has a
slope of 1.65±0.02, which we take as the value of D1 �the
error indicates the uncertainty involved in extracting the
slope of the scaling region�. Thus the light distribution over
North America in the EaN image is fractal. �Other regions of
the EaN image also exhibit fractality, with different values of
D1.� In Sec. III we demonstrate that the EaN light distribu-
tion is also multifractal.

Yook et al. �4� have recently reported that the world’s
human population, as well as the population of internet
routers and autonomous systems, is fractally distributed.
Additionally, several studies �5–10� have demonstrated
various fractal properties of urban settlements. We were thus
led to consider the possibility of common, underlying
mechanisms shared by growing populations that lead to frac-
tal distributions.

One characteristic found in many growing populations is
the existence of some generalized reproduction process,
where existing members of the population generate more
members. In addition to biological reproduction, in some
nonbiological systems, concentrated populations can encour-
age the creation of more members. For example, areas that
are technologically highly developed are likely to stimulate
more development than areas that are not as technologically
developed.

Generally, in such systems, new members of a population
become situated near an existing member, but not at the ex-

act same location. We model this process as a local “resettle-
ment,” whereby an existing member of the population pro-
duces one or more new members, who then resettle to a
nearby location.

In this paper we demonstrate that these two ingredients,
reproduction and local resettlement, can lead to multifractal
spatial distributions for growing populations. We present
several point placement models in one and two dimensions
which implement these ideas and show, both numerically and
analytically, that they lead to multifractal distributions.

FIG. 1. A version of the Earth at Night image �1�. This is a composite image created with data from the Defense Meteorological Satellite
Program of the Earth’s nighttime man-made lights as seen from space. For the analysis, a gray scale 30 000�15 000 pixel image was used.
The image pixels have intensity values ranging from 0 to 100.

FIG. 2. Plot for calculating the information dimension D1 �see
Eq. �3�� for North America in the Earth at Night image. The quan-
tity �i=1

N����i ln �i is plotted vs ln � �open circles�, where � is in units
of pixels, resulting in a linear scaling region, the slope of which is
a finite-scale approximation of D1. The solid line has a slope of
1.65±0.02, where the error value indicates the uncertainty involved
in extracting the slope of the scaling region.
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One might suspect that fractal population densities
arise due to strong inhomogeneities of the underlying space
�e.g., inhomogeneities in the distribution of land fertility,
natural resources, etc.�. Our models initially �Sec. II� employ
spaces that have no inhomogeneity, thus demonstrating
that fractal population distributions can occur without inho-
mogeneity of the background space on which the population
grows. We also consider generalizations to our models
that include geographical inhomogeneities �Sec. IV� and
demonstrate that, for the particular forms of the inhomoge-
neities that we employ, the multifractality of the distribution
is unaffected.

In Sec. II we present our point placement models along
with numerical results. �We emphasize that the set of models
we introduce in Sec. II is not exhaustive, and many other
similar models could be conceived.� Section III considers
situations where a multifractal distribution is sensed by an
instrument that saturates at a maximum measurable value
�clipping�. We show that such clipping occurs in the EaN
data, affecting the determined Dq. In Sec. IV, we investigate
the effect of adding geographical inhomogeneity to the
underlying space of our models. In Sec. V we present ana-
lytical results for some of our models. We summarize our
findings and conclude in Sec. VI. Appendix A provides de-
tails and background on the analytical calculation of the
spectra of fractal dimensions for some of our models. Appen-
dix B contains the proof of a theorem used in Appendix A
�this theorem should be of very general utility, not restricted
to our specific models, in analysis of the spectra of fractal
dimensions�.

II. MODELS AND RESULTS

A. One-dimensional random interval (model 1)

We begin with a very simple model that places points on
the circumference of a circle. �For convenience we consider
a circumference of unit length.� Our initial state is a single
point on the circle’s circumference. As the population �num-
ber of points on the circumference of the circle� grows, we

consider the intervals of the circle’s circumference between
two adjacent points. At each subsequent discrete time step
�each “generation”� labeled t, a new point is “born” in the
middle of each preexisting interval with the same given fixed
birth probability p, with each new point bisecting its corre-
sponding target interval. Several representative steps of this
construction are illustrated in Fig. 3.

In this way, every interval has an equal probability to
generate or attract new points at the same rate p. This also
implies that regions with a high density of points �i.e., with a
greater number of intervals� are more likely to attract new
members than areas that are sparsely populated, creating a
“rich get richer” phenomenon. We will see that all the mod-
els presented in this paper have this general characteristic.
The simple rule of placing each new point in the center of an
interval allows us to obtain analytical results, as will be
shown in Sec. V A.

For p=1 each existing interval is bisected by a point
at each time step, resulting in a uniformly distributed set
of points on the circle circumference for all t. Thus, for
more interesting point distributions, we turn our attention to
models with p�1. As an example, we numerically examine
the p=0.5 case. Figure 4 shows semilogarithmic plots of
point location histograms, along the circle circumference,
with different bin sizes �x for one realization of our point
placement scheme with p=0.5, at time t=35. We observe
a roughening of the plot as smaller histogram bins are
used, thus giving a sense of the heterogeneity of the distri-
bution. To quantify this heterogeneity, we calculate the
dimension spectrum Dq of the distribution. We cover the
distribution of points with intervals of a fixed length � and
assign to each interval i a measure �i equal to the fraction
of the total points contained in i. Then, referring to Eq. �1�,
we plot the quantity �1−q�−1 ln I�q ,�� vs ln�1/�� for a range
of �, so that the slope of the graph in the scaling range
gives us Dq.

FIG. 3. Three representative steps of models 1 and 3.

FIG. 4. Semilogarithmic plots of histograms of point locations
on the unit length circumference of a circle for a point distribution
��106 points� generated by model 1 with p=0.5, at time t=35, for
various bin sizes �x. �a� �x=1/16, �b� �x=1/32, �c� �x=1/64,
and �d� �x=1/128.
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For q�0.5 the plots exhibit a linear regime that allows
for a relatively unambiguous determination of the dimension.
However, for smaller q there tend to be shorter scaling re-
gions, which makes the extraction of a reliable Dq more error
prone. This is due to the fact that the distribution is made up
of a finite collection of points. As the grid covering the dis-
tribution is made finer, grid intervals in the more sparsely
populated areas begin to contain either 0 or 1 points. Further-
more, if � is made small enough, eventually all the points in
the distribution are covered by different boxes, and the di-
mension for the distribution is simply the dimension of a
collection of individual points—i.e., zero. Thus, in order to
get a meaningful dimension out of a finite distribution of
points, a certain degree of coarseness of the covering grid is
necessary. For small values of q , Dq relies heavily on boxes
containing small amounts of the measure. Therefore, as � is
decreased, a scale is quickly reached where individual points
in sparsely populated areas are covered by separate boxes,
thereby destroying the overall scaling behavior. For larger q,
the dense regions have a large enough influence on Dq that
the effects of the finiteness of the distribution are not ob-
served until very small scales are reached, allowing for a
relatively larger scaling range.

Figure 5 is a plot of the numerically determined average

Dq �open circles� for 20 realizations of point distributions
generated by model 1 with p=0.5 at time t=35. �The number
of points in each realization ranges from 1.2�105 to
2.8�106 points.� The solid line represents the analytical re-
sult for Dq derived in Sec. V A �Eq. �13� with p=0.5�. Both
the numerical and analytical results demonstrate that this
model generates multifractal distributions.

Notice that our analytical value for the box-counting di-
mension D0 is 1. Unlike Dq for q positive, D0 depends only
on the limiting set of points and not their distribution. Our
result that D0=1 indicates that, although the point distribu-
tion is multifractal, the set filled by the points in model 1 as
time t goes to infinity is not fractal. In fact, the entire cir-
cumference is filled with probability 1, which can be easily
seen as follows. Since each interval has a probability
�1− p� of not being bisected at each time step, the probability
for an interval not to have been bisected by time t is simply
�1− p�t, which approaches zero as t approaches infinity.
Therefore no empty intervals remain as t→�. One can simi-
larly argue for the other models in this paper �except model
7� that the limiting sets are not fractal; the heterogeneous
point distributions they yield are reflected by the fractional
values of Dq for q�0.

We can also consider model 1 in the limit where p→0.
We think of this limit as the situation where at most one
interval is chosen to be bisected from all available intervals
at each time step. This allows us to reformulate the point
placement scheme as follows. We begin with the same initial
condition as the original model, which is a single point on
the circle circumference. Then at each subsequent discrete
time step we place a new point according to the following
prescription: �a� a target point, or parent, is chosen from all
of the preexisting points with equal probability; �b� the new
point, or child, is placed in the middle of one of the two
empty intervals adjacent to the target point with equal prob-
ability. Steps �a� and �b� are repeated until the desired system
size is reached.

To show that this point placement scheme coincides
with the p→0 limit of model 1, we plot the numerically
determined average Dq for 20 realizations of 106 point
distributions generated by it in Fig. 5 �open triangles�
and observe that the data agree with the p→0 limit of the
analytical result for Dq �dashed line� calculated in Sec. V A
�Eq. �15��.

Thus we see that model 1 can create point distributions
with Dq ranging from the trivial Dq=1 curve, corresponding
to p=1, to the Dq curve associated with p→0.

B. Two-dimensional square (model 2)

Model 2 is a two-dimensional analogue of model 1, where
points are placed on the unit square �0	x	1, 0	y	1�,
instead of the circumference of a circle. Beginning with a
single point at �0.5,0.5�, we consider reproduction by a pro-
cess mimicking cell division. At each discrete time step, each
preexisting point, or parent, has a probability p of dividing
into four points, or children, where these four points disperse
to occupy �resettle� the centers of the four equal size squares
obtained by partitioning the original square associated with
the parent point; see Fig. 6.

FIG. 5. Plots of Dq for model 1 with p=0.5 and p→0. The open
circles �p=0.5� and triangles �p→0� are the numerical values cal-
culated from the slope of a line fit to �1−q�−1 ln I�q ,�� vs ln�1/��
�see Eq. �1��, averaged over 20 realizations of point distributions
(except for q=1, in which case the line is fit to �i=1

N����i ln �i vs ln �
�see Eq. �3��), with the error bars indicating the sample standard
deviation for each value �in the p=0.5 case the error bars are all
smaller than the open circles and we omit them�. The solid line is
the analytical result of Eq. �13� with p=0.5, while the dashed line
corresponds to Eq. �15�. As an example the inset shows the deter-
mination of D1 for one point distribution. For p=0.5, the distribu-
tions are calculated at time t=35 and have between 1.2�105 and
2.8�106 points. For p→0 the numerical results were obtained for
distributions of 106 points.
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Note that this construction can be specified without refer-
ence to points, but only to the squares they occupy: At each
discrete time step, each square is subdivided into four equal
new squares with probability p. After the desired iterations of
this area partitioning procedure, the corresponding popula-
tion distribution can be produced by simply placing a point
in the center of each square.

Since p=1 results in a homogeneous planar distributions
of points �Dq=2�, we again consider p�1 for more interest-
ing point distributions. Choosing p=0.5, we plot in Fig. 7 a
distribution of points generated by this model at time t=15.
The points form a heterogeneous distribution with dense
clusters in some regions and relatively sparsely populated
areas in other regions. Figure 8 is a plot of the numerically
determined average Dq �open circles� for 20 realizations of
point distributions generated by model 2, with t=15 and
p=0.5. The solid line represents the analytical result for Dq
derived in Sec. V B.

As we did for model 1, we can explore the p→0 limit by
considering the construction of the point distribution one
point at a time. The appropriate process is as follows: At
each time step a “parent” point is chosen out of all preexist-
ing points with equal probability and produces four “chil-
dren” points according to the fourfold cell division process
described above. The open triangles in Fig. 8 are the average
Dq of 20 independent 106 point distributions generated by
this construction, while the dashed line is the p→0 limit of

the theoretical result �Sec. V B�. Thus, model 2 creates point
distributions with Dq ranging between Dq=2 for p=1 and the
Dq associated with p→0, and hence, other than the p=1
case, results in multifractal point distributions.

C. Two-dimensional triangle (model 3)

Model 3 is a slight variation of model 2. Here triangles, as
opposed to squares, are the basis of the construction. We
begin with a point in the middle of a single equilateral tri-
angle with unit edge length. At each time step each preexist-
ing triangle �parent� is divided into four identical equilateral
triangles �children� with probability p, with the edge lengths
of the child triangles equal to half the edge length of the
original parent triangle �see Fig. 9� and with points placed in
the centers of the child triangles. We show in Sec. V B that
model 3 has the identical analytical expression for Dq as
model 2 and, thus, also results in multifractal distributions.

D. Two-dimensional random square (model 4)

Model 4 is a two-dimensional point placement scheme
similar to the p→0 limit construction of model 2, where

FIG. 6. Illustration of the fourfold “cell division” step in
model 2.

FIG. 7. A plot of a point distribution on the unit square gener-
ated by model 2 with t=15 and p=0.5.

FIG. 8. Plot of Dq for model 2 with p=0.5 and p→0. The open
circles �p=0.5� and triangles �p→0� are the average numerical val-
ues of Dq �see caption in Fig. 5� obtained from 20 realizations of
point distributions generated by this model and the error bars are
the sample standard deviations for each value �in the p=0.5 case the
error bars are all comparable in size to the open circles and we omit
them�. The solid line is the analytical result of Eq. �21�, and the
dashed line is Eq. �23�. For p=0.5, the distributions are calculated
at time t=15 and have between 1.2�105 and 2.9�106 points. For
p→0 the numerical results were obtained for distributions of 106

points.

FIG. 9. Illustration of the “reproductive” step in model 3.
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points are placed on the unit square, �0	x	1, 0	y	1�.
We begin with a single point at �0.5,0.5�. Imagining vertical
and horizontal lines drawn through this point, we see that the
point is at the vertex of four neighboring squares. At the next
time step, we choose one of the squares at random with equal
probability and place a point in its middle. We then divide
this chosen square into four smaller squares by horizontal
and vertical lines through the newly added point. Then we
continue this process: At each subsequent discrete time step
we pick a target point �parent� from all preexisting points
with equal probability and add a new point �child� to the
center of one of the target point’s four adjacent squares, also
chosen with equal probability. Several representative steps of
this construction are illustrated in Fig. 10.

Notice that some squares have two potential parent points
at their corners and some squares have only one. The former
squares are twice as likely to be subdivided as the latter
squares, unlike the p→0 limit of model 2, in which all
squares are equally likely to be subdivided.

Figure 11 shows a distribution generated by this model’s
point placement scheme, where we have successively mag-
nified dense regions of the distribution to illustrate the large
differences in densities that result at various length scales.
Figure 12 is a plot of the average Dq of 20 independent
distributions generated by this model, where the solid line is
the analytical result �37� derived in Sec. V C. Both the nu-

merical and analytical results confirm that model 4 generates
multifractal distributions.

E. One-dimensional larger interval (model 5)

We return now to one dimension with a model similar to
the construction of the p→0 limit of model 1, but with a
different local resettlement rule. Referring to the p→0 point
placement prescription of model 1, the initial state and step
�a� are identical while step �b� is modified. Instead of a new
point being randomly placed in one of the adjacent intervals
of the chosen target point with equal probability, the new
point is placed in the larger of the two intervals adjacent to
the target point, and if the two intervals are equal in size, one
is chosen at random.

In this way, the new points seek out more sparsely popu-
lated local intervals to settle within. This strategy is reason-
able in a context such as human resettlement, where the set-
tlers may try to combine the convenience of being close to
others with the possible advantages associated with more
space. We expect this resettlement scheme to yield distribu-
tions that are more homogeneous than those created by the
p→0 limit of model 1 and, hence, yield greater Dq.

We numerically obtain Dq and find the dimension spec-
trum to be multifractal, having the same qualitative shape as
the p→0 result for Dq for model 1. However, due to the
more uniform nature of the distributions created by this
model, the specific values of Dq are larger at each q (e.g.,
D1=0.84±0.01 �averaged over 20 distributions of 106 points,
where the error is the sample standard deviation� for this
model vs our analytical result D1�0.72 for the p→0 limit of
model 1 �Eq. �14��).

F. Two-dimensional sparse square (model 6)

Model 6 is a two-dimensional analog of model 5. The
initial state and step �a� of its construction are the same as in
model 4. Our aim is to extend step �b� of model 5, the choos-
ing of the larger interval for settlement, to two dimensions,
and for that purpose, we make the following observation. In
the square-based two-dimensional point placement scheme
of model 4, there are two different types of squares which we
refer to as type-I and type-II squares. A type-I square only
has one of its vertices occupied by a point, while a type-II
square has two opposite vertices occupied by points. �See

FIG. 11. A plot of a 4�105 point distribution on the unit square generated by model 4. Dense regions are magnified to illustrate the
heterogeneity of the point densities in the distribution at different scales.

FIG. 10. Three representative steps of models 4 and 6.

OZIK, HUNT, AND OTT PHYSICAL REVIEW E 72, 046213 �2005�

046213-6



Fig. 13 for an illustration of type-I and type-II squares.� Thus
a type-I square can be regarded as more sparsely populated
than a type-II square of equal size. With this in mind, step �b�
for model 6 is to place the new node in the middle of the
largest square adjacent to the target point. In case of a tie,
choose a type-I square over a type-II square, with any sub-
sequent ties being resolved by an equal probability random
choice from the remaining candidate squares.

We plot a distribution generated by this model in Fig. 14.
We find this distribution to be multifractal, with a Dq that
is similar in shape to, but everywhere larger than, the Dq
of model 4 �except for q=0 where the two coincide
with D0=2�. In particular, the information dimension is
D1=1.30±0.02 �averaged over 20 distributions of 106

points�, as compared to our analytical result of D1�1.05 for
model 4 �Eq. �38��.

G. Two-dimensional unstructured (model 7)

Looking at Fig. 7 �model 2�, Fig. 11 �model 4�, and Fig.
14 �model 6�, we notice square-shaped artifacts and diagonal

point formations that arise due to the structured, square-
based nature of those point placement schemes. Model 7 is a
two-dimensional point placement scheme that aims to avoid
such artifacts, while maintaining the two ingredients of re-
production and local resettlement. We begin with a single
point and assign to this point a child distance dc=1/4. At
each subsequent discrete time step t, each preexisting point
�parent� is selected to “reproduce” with probability p, where
the reproduction consists of a child point being placed at a
random location on the circumference of a circle centered on
the parent point and with radius equal to the parent point’s
dc. A child distance equal to half the parent point’s dc is
assigned to the child point.

Model 7 results in multifractal point distributions for all
values of p. This is in contrast to the trivial dimension
spectrum Dq=1 for the p=1 limit of model 1 and the trivial
Dq=2 result for the p=1 limit of models 2 and 3. In addition,
while all the models presented thus far possess an integer-
valued box counting dimension D0 equal to the dimension-
ality of their respective ambient spaces, D0�2 for all p in
model 7.

In a manner similar to the p→0 limits of models 1 and 2,
we can define the p→0 limit of model 7 and create our point
distribution one point at a time. The construction is as fol-
lows: At each time step a parent point is chosen from all
preexisting points with equal probability. The parent point
then produces a child according to the reproductive step de-
scribed above in the general p case. A distribution generated
by the p→0 limit of model 7 is shown in Fig. 15. As in-
tended, there are no grid-type artifacts visible. The p→0
limit of model 7 produces point distributions with
D1=1.36±0.05 �averaged over 20 distributions of 106

points�.

H. Discussion

Table I summarizes our results for D1 for our models and
for the Earth at Night. Table II summarizes gives qualitative

FIG. 12. Plot of Dq for model 4. The open circles are the aver-
age numerical values of Dq �see caption in Fig. 5� obtained from 20
realizations of 106 point distributions generated by this model and
the error bars are the sample standard deviations for each value. The
solid line is the analytical result of Eq. �37�.

FIG. 13. Illustration of type-I �labeled I� and type-II �labeled II�
squares, where black dots indicate populated vertices.

FIG. 14. A plot of a 105-point distribution on the unit square
generated by model 6.
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descriptions of the reproduction and local resettlement
mechanisms of our seven models.

Our result that the different strategies of reproduction and
local resettlement used in these models �Table II� all lead to
multifractal spatial patterns of population density strongly
suggests that multifractality may be a generic feature in real
situations in which processes involving reproduction and lo-
cal resettlement take place.

We emphasize that the spirit of our approach is very
minimalist. In many real cases multiple interacting complex
processes undoubtedly influence the determination of popu-
lation patterns. For example, several important factors for the
EaN image are geography �mountains, rivers, deserts, etc.�,
politics, societal and cultural factors, economics, etc. Our
models show that considerations of underlying spatial het-
erogeneities are not required for explaining the existence of
fractally heterogeneous distributions: even very simple dy-
namics incorporating reproduction and local resettlement is
sufficient.

III. EFFECT OF CLIPPED DATA ON MULTIFRACTALITY

We now revisit the North American part of the Earth at
Night image �Fig. 1� and analyze its fractal properties. Figure
16 is a plot of Dq calculated from the measured light distri-
bution, where the error bars indicate the uncertainty involved
in extracting the slopes of the various scaling regions. Al-
though we observe a multifractal Dq curve, studies of human
population distributions �8,10� suggest that the a steeper Dq
should result. We now show how this discrepancy can be
resolved.

Figure 17 is a log-log plot of the histogram of pixel in-
tensities for North America in the EaN image. A spike is
observed for a range of intensity values near the maximum
value. This suggests that some regions with high light inten-
sities caused some of the photoelectric cells of the satellites’
sensors to saturate, thereby clipping the intensity values at a
maximum allowable value. Additionally, it is known that,
when a photoelectric cell is subjected to high intensities, it
can trigger surrounding cells to register more light, resulting
in the so-called “blooming” effect, which could account for
the broadness of the observed high-intensity spike. We note
that the saturated pixels make up about 8% of the total num-
ber of nonzero-intensity pixels. We expect that blooming
only changes intensities by a marginal amount, whereas clip-
ping can make a drastic change. Thus the effect of blooming
on Dq should be negligible and we ignore it.

To illustrate the effects that this type of clipping has on
multifractal distributions, we apply a scheme that mimics the
clipping in the EaN image to a point distribution generated
by one of our models. For this purpose we choose a
�3�106�-point distribution generated by the p→0 limit of
model 2. �Similar results are obtained using our other mod-
els.� First we roughly match the smallest scale of our distri-
bution to that of the EaN image. Since the part of the EaN
image we analyze is made up of 3000�6000 pixels, we
cover our distribution with a fixed size grid of simulated
pixels in which a simulated pixel corresponds to a grid
square with edge length of 2−12, which is about
1 /	3000�6000. Thus, while each pixel of the EaN image
represents a light intensity value, each simulated pixel con-
tains a number of individual points. The clipping procedure

FIG. 15. A plot of a 105-point distribution on the unit square
generated by the p→0 construction of model 7.

TABLE I. A summary of numerical and theoretical results for the point placement models and the Earth
at Night image �Fig. 1�.

Model Dimensionality of space D1 Dq �theory�

1 1 Eq. �14� Eq.�13�
1 �p→0� 1 1/ �2 ln 2��0.72 Eq. �15�
2,3 2 Eq. �22� Eq. �21�
2,3 �p→0� 2 3/ �4 ln 2��1.08 Eq. �23�
4 2 8/ �11 ln 2��1.05 Eq. �37�
5 1 0.84±0.01 —

6 2 1.30±0.02 —

7 �p→0� 2 1.36±0.05 —

Earth at Night �North America� 2 1.65±0.02 —
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involves picking a maximum number of points allowed in a
simulated pixel and changing the number of points in any
simulated pixel containing more than this amount to the
maximum amount. In order for the clipped point distribution
to exhibit an appreciable range for the numbers of points
in the individual simulated pixels we choose the maximum
clipping value such that the total number of clipped
simulated pixels make up only 4% of the total nonempty
simulated pixels �this is in contrast to the 8% observed in
the EaN image�. For this particular distribution, any simu-
lated pixel containing more than 40 points has its count
reset to 40.

Figures 18�a� and 18�b� are histograms showing the dis-
tribution of the number of points contained in individual
simulated pixels before and after the clipping is applied, re-
spectively. We see that the clipped histogram is qualitatively
similar to the histogram for the EaN image �Fig. 17�. Next,

we calculate Dq for the point distribution before and after
clipping �open circles and open triangles in Fig. 19, respec-
tively�. We see that the clipping procedure transforms the
unclipped Dq to a flatter curve, making it more similar to the
Dq for North America in the EaN image �Fig. 16�. Thus, we
are able to conclude that the EaN image characteristics are
consistent with a multifractal light intensity distribution with
a steep Dq sensed by an instrument that saturates at a maxi-
mum measurable intensity value.

IV. INHOMOGENEITY

Our models can be generalized to include geographical
inhomogeneity. For example, one can imagine that the un-
derlying space is supplemented by a fertility field and that
reproduction is more likely in regions of higher fertility. To
investigate the effects of such inhomogeneities on the Dq of

TABLE II. Summary of reproduction and local resettlement strategies employed in models
1–7.
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a point distribution, we modify the p→0 construction of
model 2 by use of a fertility field F�x ,y� which we use to
construct a space-dependent, parent node selection probabil-
ity. If the location of point i is �xi ,yi�, then the selection
probability for this point is taken to be Pi=F�xi ,yi� /
� jF�xj ,yj� �this is in contrast to the original prescription of
choosing the parent point from all preexisting points with
equal probability�. We investigate two forms for the fertility
field. First we use a smooth field

Fs�x,y� = 1 − 0.3
cos�2
x� + sin�2
y�� �4�

on the unit square �0	x	1, 0	y	1�. We generate point
distributions with this modified version of the p→0 limit of
model 2 and find that, while the regions of larger Fs in the
center of the square are much more dense with points than
the regions of smaller Fs near the corners, there is, neverthe-

less, no discernible difference in Dq compared to the homo-
geneous case. That is, both the values of Dq and the quality
and extent of the scaling ranges remain unchanged.

Next, to explore whether the above result can be attrib-
uted to the local smoothness of Fs, we consider a rough
fertility field

Fr�x,y� = 1 + 0.1�fw�x� + fw�y�� , �5�

fw�z� � − �
j=0

�

�−j cos�2
� jz� , �6�

with �=1.5 and �=3. For ���, the function fw�z� is a
“Weierstrass function” �see Fig. 20�; it is rough in the sense
that, although it is continuous, it is nondifferentiable, and the
graph of fw�z� vs z is a fractal curve �the fractal dimension of
the curve is 2− �ln �� / �ln ���1.63 �11��. With �=1.5, Fr

FIG. 16. Plot of Dq for North America in the Earth at Night
image. The error bars reflect the uncertainty involved in determin-
ing the slopes of the scaling regions in the plots of the quantity
�1−q�−1 ln I�q ,�� vs ln�1/�� �see Eq. �1��.

FIG. 17. Histogram of individual pixel intensities for North
America in the Earth at Night image.

FIG. 18. Histograms of the number of points in individual simu-
lated pixels �boxes in an �=1/4096 grid� used to cover a
�3�106�-point distribution generated by the p→0 limit of model 2
�a� for the original distribution and �b� after the original distribution
was clipped by allowing a maximum of 40 points in any simulated
pixel.

FIG. 19. Plot of Dq for a �3�106�-point distribution generated
by the p→0 limit of model 2 before the clipping procedure dis-
cussed in Sec. III is applied �open circles� and after it is applied
�open triangles�. The error bars reflect the uncertainty involved in
determining the slopes of the scaling regions in the plots of the
quantity �1−q�−1 ln I�q ,�� vs ln�1/�� �see Eq. �1��.
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has the same range of variation as Fs �i.e., 0.4–1.6�. Apply-
ing this fertility field to the p→0 limit of model 2 results in
the same values and scaling ranges for Dq as in the homoge-
neous case and the smooth fertility field case �Eq. �4��. This
suggests that, while inhomogeneities of the underlying space
may dictate certain aspects of the distribution of a growing
population—for example, where the points are more likely to
settle—its fractality can be due mainly to reproduction and
local resettlement processes.

V. THEORY

A. Model 1

Here we derive an analytical expression for the fractal
dimension spectrum Dq of population distributions generated
by the one-dimensional point placement scheme of model 1.

We define N�k , t� to be the average �over different realiza-
tions of model 1� number of intervals of length 2−k at time t.
The initial condition for this model �at t=1� is a single point
on the unit length circumference of a circle, implying
N�k ,1�=k0, where kj is the Kronecker delta. At each time t,
each preexisting interval is bisected with probability p. Thus,
with probability p an interval of length 2−k is replaced by two
intervals of lengths 2−�k+1�. The discrete time evolution equa-
tion for N is then

N�k,t + 1� = 2pN�k − 1,t� + �1 − p�N�k,t� , �7�

where pN�k−1, t� is the average �over different realizations
of model 1� number of intervals of length 2−�k−1� bisected at
time t+1 and �1− p�N�k , t� is the average number of 2−k

length intervals that remain unchanged at t+1. We now de-
fine N�t�=�kN�k , t� to be the average number of intervals �of
all sizes� at time t. Taking the sum over k of Eq. �7� we
obtain the simple recursion relation

N�t + 1� = �1 + p�N�t� , �8�

which, since N�1�=1, gives the result N�t�= �1+ p�t−1 for the
evolution of the average total number of intervals.

In Appendix A, we introduce the partition function
formalism for calculating Dq. We define the quantity
�= �q−1�Dq and derive the following expression for q��� for
model 1 �Eq. �A10��:

q��� = 1 + lim
t→�

ln2k��t

ln N�t�
, 2k��t =

�k
N�k,t�2k�

N�t�
. �9�

Multiplying both sides of Eq. �7� by 2k� and then sum-
ming over k, we obtain the recursion relation

2k��t+1 =
1

1 + p
�2�2p + 1 − p�2k��t, �10�

which, since 2k��t=1=1, gives

2k��t = � 1

1 + p
�2�2p + 1 − p��t−1

. �11�

Substituting Eq. �11� into Eq. �9�, we obtain

q =
ln�2�2p + 1 − p�

ln�1 + p�
. �12�

Then, since Dq=��q� / �q−1�, we invert Eq. �12� for ��q� and
obtain the following result for Dq:

Dq =

log2� p − 1 + �1 + p�q

2p
�

q − 1
. �13�

In particular, using L’Hospital’s rule,

D1 =
�1 + p�log2�1 + p�

2p
. �14�

For p=1 we get the expected result Dq=1, while for the
p→0 limit, we obtain

Dq =
log2�1 + q� − 1

q − 1
�15�

and

D1 =
1

2 ln 2
� 0.72. �16�

B. Models 2 and 3

Here we derive the analytical Dq for models 2 and 3.
We adopt the area partitioning viewpoint presented in Sec.
II B, where we focus on the squares containing the points
rather than the points themselves. We begin by defining
N�k , t� to be the average number of squares with edge length
2−k at time t. The initial state �at t=1� is a single square �with
a point at its center� with unit edge length, giving us
N�k ,1�=k0. At each time t, each preexisting square is di-
vided into four equal-sized squares with half the edge length
of the original square with probability p �Fig. 6�. Thus, with
probability p a square of edge length 2−k is replaced by four
squares of edge lengths 2−�k+1�. The discrete time evolution
equation for N�k , t� is then

FIG. 20. A plot of the Weierstrass function fw�z� �Eq. �6��. In
our numerical implementation the infinite upper limit on the sum-
mation in Eq. �6� is replaced by jmax, where jmax is chosen such that
the smallest value of � used in determining Dq is at least 1 order of
magnitude larger than the smallest scale of the roughness, 3−jmax.
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N�k,t + 1� = 4pN�k − 1,t� + �1 − p�N�k,t� . �17�

We define N�t�=�kN�k , t� to be the average number of
squares �of all sizes� at time t and take the sum over k of Eq.
�17� to obtain

N�t + 1� = �1 + 3p�N�t� , �18�

which, since N�1�=1, gives the result N�t�= �1+3p�t−1 for
the evolution of the average total number of intervals. Inter-
changing the squares in the above derivation with equilateral
triangles, one can see that the same evolution equation holds
for the triangles in model 3.

In Appendix A we show that Eq. �9�, which allowed us to
calculate q��� in terms of 2k��t for model 1, holds for models
2 and 3 as well. Following the procedure in Sec. V A, we
multiply both sides of Eq. �17� by 2k� and sum over k, solv-
ing the resulting recursion relation to obtain

2k��t = � 1

1 + 3p
�2�4p + 1 − p��t−1

. �19�

Substituting Eq. �19� into Eq. �9�, we obtain

q =
ln�2�4p + 1 − p�

ln�1 + 3p�
. �20�

Thus, for models 2 and 3 we obtain the multifractal di-
mension spectrum

Dq =

log2� p − 1 + �1 + 3p�q

4p
�

q − 1
�21�

and the information dimension

D1 =
�1 + 3p�log2�1 + 3p�

4p
. �22�

For p=1 we get Dq=2, while for the p→0 limit, we
obtain

Dq =
log2�1 + 3q� − 2

q − 1
�23�

and

D1 =
3

4 log 2
� 1.08. �24�

C. Model 4

The calculation of Dq for model 4 is based on the
classification of squares into types I and II, discussed in Sec.
II F. We begin by defining N1�k , t� and N2�k , t� to be the
average �over different realizations� number of type-I and
type-II squares, respectively, with edge length 2−k at time t.
The initial state �t=1� is a single point at �0.5,0.5�. The
point divides the unit square into four equal squares of edge
length 1/2, with each square having one point on one of its
vertices. Thus N1�k ,1�=4k1, while N2�k ,1�=0 for all k. At
each time t, the new point is equally likely to appear in

each type-I square, but is twice as likely to appear in each
type-II square, because there are two parent points that can
produce offspring in each type-II square. In other words, a
type-I square with edge length 2−k is chosen with probability
N1�k , t� /� j�N1�j , t�+2N2�j , t��, while a type-II square of the
same size is chosen with probability 2N2�k , t� /� j�N1�j , t�
+2N2�j , t��. When a type-I square is chosen, the new point
is placed in its center, destroying the original square and
creating three type-I squares and one type-II square, all
with half the edge length of the original square. On the other
hand, when the new point is in a type-II square, it is replaced
by two type-I squares and two type-II squares, all having half
the edge length of the original square. Notice that either way,
the quantity � j�N1�j , t�+2N2�j , t�� increases by 4 between
time t and t+1, so that � j�N1�j , t�+2N2�j , t��=4t.

The discrete time evolution equations for both types of
squares are then

N1�k,t + 1� = N1�k,t��1 −
1

4t
� + N1�k − 1,t�

3

4t

+ 2N2�k − 1,t�
2

4t
, �25�

N2�k,t + 1� = N2�k,t��1 −
2

4t
� + N1�k − 1,t�

1

4t

+ 2N2�k − 1,t�
2

4t
. �26�

In Appendix A we show that for model 4 �Eq. �A14��,

q��� = lim
t→�

ln�T1�t� + 2qT2�t��
ln t

, �27�

where Ti�t�=�k2
k�Ni�k , t�. Multiplying Eqs. �25� and �26� by

2k� and summing over k, we obtain

T1�t + 1� = T1�t��1 +
3 � 2� − 1

4t
� + T2�t�

4 � 2�

4t
, �28�

T2�t + 1� = T2�t��1 +
4 � 2� − 2

4t
� + T1�t�

2�

4t
. �29�

At this point, we make the continuous time approximation
Ti�t+1�−Ti�t��dTi�t� /dt, valid for large t, which allows us
to represent Eqs. �28� and �29� as the matrix differential
equation

dT�s�
ds

= M · T�s� , �30�

where

T�s� = �T1�s�
T2�s� � , �31�

M = �3 � 2� − 1 4 � 2�

2� 4 � 2� − 2
� , �32�

and s= �1/4�ln t.
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Equation �30� is solved in terms of the eigenvalues �a ,�b
and the eigenvectors Ta ,Tb of the matrix M, giving

Ti � e�is = t�i/4, �33�

for i=a ,b, with �a ,�b distinct and real and �a��b. We can
express the quantity T1�t�+2qT2�t� in Eq. �27� in terms of a
linear combination of the components of these eigenvectors,
whose long-time behavior is dominated by the behavior of
Ta, the eigenvector associated with the larger eigenvalue �a.
Thus Eq. �27� gives us the simple result

q = �a/4. �34�

The eigenvalues of M are the roots of its characteristic
polynomial,

�2 + ��3 − 7 � 2�� + 2 − 10 � 2� + 8 � 22� = 0. �35�

This equation is also quadratic in 2�, allowing us to solve, for
����,

���� = log2� 1

16
�10 + 7� ± 	17�2 + 44� + 36�� . �36�

We substitute the relationship from Eq. �34� into Eq. �36�
and, since ��q�= �q−1�Dq, we resolve the ambiguity of the �
sign by requiring that ��q=1�=0. This results in

Dq =
1

q − 1
log2�1

8
�5 + 14q − 	68q2 + 44q + 9�� �37�

for the dimension spectrum of model 4. In particular,
applying L’Hospital’s rule to Eq. �37�, the information
dimension is

D1 =
8

11 ln 2
� 1.05. �38�

VI. CONCLUSION

The main conclusion of this paper is that reproduction and
local resettlement processes may lead to multifractal spatial
distributions for growing populations. We introduced a num-
ber of point placement models in one and two dimensions
and showed that the models resulted in multifractal distribu-
tions. Furthermore, we have demonstrated a qualitative simi-
larity between the example of the Earth at Night image and
clipped versions of distributions generated by our models.
We thus suggest that the mechanism by which our models
create multifractal distributions may be operative in the
growth of real systems.
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APPENDIX A: CALCULATION OF MODEL DIMENSION
SPECTRA

1. Partition function formalism

The partition function formalism �12,13� is an alternative
to the fixed-sized grid method of Eq. �1� for calculating
a dimension spectrum of a measure. We demonstrate
here how it allows us to relate the various interval and
square-size distribution functions found in models 1, 2, 3,
and 4 to the dimensions of the point distributions generated
by them.

We cover the measure of interest with a disjoint covering

Si�, i=1,2 , . . . ,N, where each element Si of the covering set
has a diameter �i less than or equal to . �The diameter �i is
the largest possible distance between two points in Si.� The
partition function is defined as

�q��,
Si�,� = �
i=1

N

�i
q/�i

�, �A1�

where �i is the measure of Si. For a given  the covering 
Si�
is now chosen such that Eq. �A1� is maximized �for q�1� or
minimized �for q�1�, which defines

�q��,� = �supSi
�q��,
Si�,� , for q � 1,

infSi
�q��,
Si�,� , for q � 1.

� �A2�

Then, letting →0, we define

�q��� = lim
→0

�q��,� . �A3�

The quantity �q��� experiences a jump from 0 to +�, as � is
increased, at a critical value that we denote ��q�. The dimen-

sion D̃q of the measure is then defined as

D̃q = ��q�/�q − 1� . �A4�

In practice, it is difficult to determine whether a particular
covering 
Si� is optimal in the sense of Eq. �A2�. However,
one can often compute the correct dimension by considering
specific coverings, in the following sense. Consider a se-
quence of disjoint coverings 
Si

�m�� where covering m of the
sequence has a maximum diameter �m� ��i

�m���m� for every
component i of covering m� and �m� converges to zero as m
approaches infinity. If the limit

�̂q��� = lim
m→�

�q��,
Si
�m��,�m�� �A5�

exists, then like �q��� it experiences a jump from 0 to +�, as
� increases, at a critical value �= �̂�q�. In terms of the se-
quence 
Si

�m�� of coverings �not necessarily optimal�, we can
then compute a dimension spectrum

D̂q = �̂�q�/�q − 1� . �A6�

Since the sequence of coverings used to compute D̂q
may be suboptimal, we have �̂�q����q� for q�1 and

�̂�q�	��q� for q�1. Thus D̂q� D̃q in each case. Assuming
the limit in Eq. �1� that defines Dq to exist, then Dq can be
computed by the partition function formalism above using
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equal-size coverings ��i
�m�=�m� for every i and m�. Thus

Dq� D̃q as well. While there do exist examples for which

D̃q�Dq for q�1,1 the two dimensions are typically found to
coincide in analytical examples with physical bases. Further-
more, for q�1 the two dimensions always coincide.

Theorem. For every probability measure � for which the

limit in Eq. �1� exists, D̃q=Dq for all q�1. �If one defines Dq
as a liminf, then this equality holds for all �.�

We prove this theorem in Appendix B.
The theorem demonstrates that, for q�1 at least, the di-

mension spectrum computed according to the partition func-
tion formalism from a particular sequence of coverings is not
that sensitive to the type of covering; equal-size coverings
yield the same spectrum as a sequence of coverings that is
optimal in the sense of Eq. �A2�. While it may be possible to

compute a different value of D̂q from a sufficiently subopti-
mal sequence of coverings, we conjecture that for the cover-
ings we consider below,

D̂q = D̃q = Dq. �A7�

Furthermore, we conjecture that Eq. �A7� holds not only for
q�1, but for all q�0.

For our purposes, the application of Eq. �A7� for q	1 is
supported by the following reasoning. In all of the cases

below, the formula we obtain for D̂q is an analytic function

of q �for our region of interest 0	q	2�. If D̂q=Dq for
q�1, it follows that if Dq is continuous at q=1, then

D̂1=D1. Furthermore, if Dq is analytic, then D̂q=Dq for
q�1 as well.

2. Application to the models

The practical implication of Eq. �A7� for us is significant.
It means that we can choose any sequence of coverings
whose maximum diameter converges to zero, and this choice
can be made in a manner that facilitates analytic computa-
tions. The result will be the same as that for an equal-cube-
size covering �Eq. �1�� or an optimal covering �Eq. �A2��.

For model 1, we choose the intervals between the points
at time t as a covering for the distribution. We regard each
interval as covering the equivalent of one point since it con-
tains two half points at each of its ends. Hence, on average,

�i= ��kN�k , t��−1=1/N�t� for all i, and Eq. �A5� becomes2

�̂q��� = lim
t→�

�1/N�t��q�
i

�i
−�, �A8�

where the →0 limit is replaced by t→�, since, as t
increases, the size of the largest interval decreases to zero

with probability 1. Since ln �̂q���=−� for ���̂�q� and

ln �̂q���=� for ���̂�q�, we equate ln �̂q��� to zero and ob-
tain q as a function of the transition value �̂,

q��̂� = lim
t→�

ln �i
�i

−�̂

ln N�t�
= lim

t→�

ln �k
N�k,t�2k�̂

ln N�t�
. �A9�

We then have �see Eq. �9��

q��̂� = 1 + lim
t→�

ln2k�̂�t

ln N�t�
, �A10�

where

2k��t =
�k

N�k,t�2k�

N�t�
. �A11�

Each square in model 2 and triangle in model 3 contains,
on average, ��kN�k , t��−1=1/N�t� of the total measure. Thus,
like we derived for model 1, we obtain

q��̂� = 1 + lim
t→�

ln2k�̂�t

ln N�t�
. �A12�

For model 4 we use the two types of squares �types I and
II� to cover the distribution. A type-I square has one point on
one of its vertices and hence covers the equivalent of a quar-
ter of a point, while a type-II square, with two points on its
vertices, covers the equivalent of half a point. Thus, since at
time t we have t total points, the measure contained in a
type-I square is 1 /4t, while that contained in a type-II square
is 1 /2t. Thus Eq. �A5� becomes

�̂q��� = lim
t→�

1

�4t�q��
i=1

N1

�i
−� + 2q�

i=1

N2

�i
−�� , �A13�

where the first summation is over all type-I squares and the
second is over all type-II squares. Taking the logarithm of
this expression and equating it to zero, we obtain

q��̂� = lim
t→�

ln�T1�t� + 2qT2�t��
ln t

, �A14�

where Ti�t�=�k2
k�̂Ni�k , t�.

1As a simple example, we consider the set 1 ,1 /2 ,1 /3 , . . . ,n−1 , . . .,
and q=0. For this set it can be shown that Eqs. �A1�–�A4� yield

D̃0=0, which is intuitively reasonable for a set that is a countable
collection of points. In contrast, Eqs. �1� and �2� yield D0=1/2. To
see this we first note that, for q=0, Eqs. �1� and �2� give the well-
known result D0=lim�→0
�ln N���� / �ln�1/����, where N��� is the
number of � intervals needed to cover the set. Next we observe that
the distance between 1/n and 1/ �n+1� is approximately 1/n2 for
large n. Thus setting �=1/n2, we need n intervals to cover the first
n elements of the set, one interval for each such element. To cover
the remaining elements we must cover the interval (1/ �n+1� ,0).
This requires �1/���1/ �n+1��=n2 / �n+1��n intervals. Thus
N����2n=2/�1/2, yielding D0=1/2.

2There is a subtlety here. As t increases we are changing both the
covering and the distribution of points. We really should be looking
at the limiting distribution and not the time t distribution. Since
each interval is equally likely to subdivide, the expected measure in
each of the time t intervals is the same, and our computations in this
section reflect this approximation.
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APPENDIX B: PROOF OF THEOREM FROM APPENDIX
A

As we noted in Appendix A, D̃q	Dq for all q�0, so we

now show that also D̃q�Dq for q�1. Our proof is based on
the theorem in �14� that for q�1, the quantity

Iq�s� =� �� d��y�
�x − y�s�

q−1

d��x� �B1�

is finite for s�Dq and infinite for s�Dq. To see that

D̃q�Dq, we show that D̃q�s whenever Iq�s� is finite. Let

Si� be a disjoint covering of �, as in Appendix A, and recall
that �i is the measure of Si and �i is its diameter. Then
considering only the contribution to Iq�s� from points x and y
that are in the same Si, we have

Iq�s� � �
i=1

N �
Si

��
Si

d��y�
�x − y�s�q−1

d��x�

� �
i=1

N �
Si

��
Si

d��y�
�i

s �q−1

d��x�

= �
i=1

N

�i��i

�i
s �q−1

= �
i=1

N

�i
q/�i

�q−1�s

= �q„�q − 1�s,
Si�,…

by Eq. �A1�. This implies that �q(�q−1�s ,)	 Iq�s� by Eq.
�A2�, since q�1, and hence �q(�q−1�s)	 Iq�s� by Eq. �A3�.
Therefore, if Iq�s� is finite, then �q(�q−1�s) is finite, whence

��q�� �q−1�s, and finally D̃q�s by Eq. �A4�.
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